📞
Contrxl
External Links
Theoretical Learning
Theoretical Learning
  • 🏡Home
  • 📰News & Information
  • Systems Administration
    • ⌨️Cisco
      • Networking Basics
        • Communication in a Connected World
        • Network Components, Types and Connections
        • Wireless and Mobile Networks
        • Home Networking Technologies
        • Communication Protocols
        • Network Media
        • The Access Layer
        • The Internet Protocol
        • IPv4 and Network Segmentation
    • 🎓Learning Links
    • 💻Microsoft
      • AZ-900
        • 1. Cloud Concepts
          • 1.1 Describe Cloud Computing
            • 1.1.1 Introduction - Cloud Computing
            • 1.1.2 What is Cloud Computing?
            • 1.1.3 The Shared Responsibility Model
            • 1.1.4 Define Cloud Models
            • 1.1.5 Define the Consumption based Model
            • 1.1.6 Summary - Cloud Computing
          • 1.2 Describe the Benefits of Cloud Services
            • 1.2.1 Introduction - Cloud Services
            • 1.2.2 Benefits of High Availability and Scalability
            • 1.2.3 Benefits of Reliability and Predictability
            • 1.2.4 Benefits of Security and Governance
            • 1.2.5 Manageability in the Cloud
            • 1.2.6 Summary - Cloud Services
          • 1.3 Describe Cloud Service Types
            • 1.3.1 Introduction - Cloud Service Types
            • 1.3.2 Describe Infrastructure as a Service
            • 1.3.3 Describe Platform as a Service
            • 1.3.4 Describe Software as a Service
            • 1.3.5 Summary - Cloud Service Types
        • 2. Architecture
          • 2.1 Core Architectural Components
            • 2.1.1 Introduction - Core Architectural Components
            • 2.1.2 What is Microsoft Azure
            • 2.1.3 Get Started with Azure Accounts
            • 2.1.4 Explore the Learn Sandbox
            • 2.1.5 Describe Azure Physical Infrastructure
            • 2.1.6 Describe Azure Management Infrastructure
            • 2.1.7 Create an Azure Resource
            • 2.1.8 Summary
          • 2.2 Compute and Networking
            • 2.2.1 Introduction - Compute and Networking
            • 2.2.2 Describe Azure VMs
            • 2.2.3 Create an Azure VM
            • 2.2.4 Describe Azure Virtual Desktop
            • 2.2.5 Describe Azure Containers
            • 2.2.6 Describe Azure Functions
            • 2.2.7 Describe Application Hosting Options
            • 2.2.8 Describe Azure Virtual Networking
            • 2.2.9 Configure Network Access
            • 2.2.10 Describe Azure VPNs
            • 2.2.11 Describe Azure ExpressRoute
            • 2.2.12 Describe Azure DNS
            • 2.2.13 Summary - Compute and Networking
          • 2.3 Azure Storage Services
            • 2.3.1 Introduction - Storage Services
            • 2.3.2 Describe Azure Storage Accounts
            • 2.3.3 Describe Azure Storage Redundancy
            • 2.3.4 Describe Azure Storage Services
            • 2.3.5 Create a Storage Blob
            • 2.3.6 Identify Azure Data Migration Options
            • 2.3.7 Identify Azure File Movement Options
            • 2.3.8 Summary - Storage Services
        • 3. Management and Governance
          • 3.1 Cost Management
            • 3.1.1 Introduction - Cost Management
            • 3.1.2 Describe Factors that can Affect Costs in Azure
            • 3.1.3 Compare Pricing and TCO Calculators
            • 3.1.4 Estimate Workload Costs
            • 3.1.5 Compare Workload Costs with TCO
            • 3.1.6 Describe the Microsoft Cost Management Tool
            • 3.1.7 Describe the Purpose of Tags
            • 3.1.8 Summary - Cost Management
          • 3.2 Governance and Compliance
            • 3.2.1 Introduction - Compliance and Governance
            • 3.2.2 Describe the Purpose of Microsoft Purview
            • 3.2.3 Describe the Purpose of Azure Policy
            • 3.2.4 Describe the Purpose of Resource Locks
            • 3.2.5 Configure a Resource Lock
            • 3.2.6 Describe the Purpose of the Service Trust Portal
            • 3.2.7 Summary - Compliance and Governance
          • 3.3 Tools for Managing Azure Resources
            • 3.3.1 Introduction - Tools for Managing Azure Resources
            • 3.3.2 Describe Tools for Interacting with Azure
            • 3.3.3 Describe the Purpose of Azure Arc
            • 3.3.4 Describe ARM and Azure ARM Templates
            • 3.3.5 Summary - Tools for Managing Azure Resources
          • 3.4 Monitoring Tools
            • 3.4.1 Introduction - Monitoring Tools
            • 3.4.2 Describe the Purpose of Azure Advisor
            • 3.4.3 Describe Azure Service Health
            • 3.4.4 Describe Azure Monitor
    • 📘Microsoft Portal Links
  • Cybersecurity
    • ❓Anonymity Tools
    • 💡OSINT
      • IP & Domain OSINT
      • Email & Username OSINT
      • Vulnerability OSINT
    • 📚Projects
      • ‼️A Simulation Study of DDoS
  • 🦈Hacking
    • ☁️Cloud Attack Vectors
      • Credential Harvesting
      • Privilege Escalation
      • Account Takeover
      • Metadata Service Attacks
      • Misconfigured Cloud Assets
      • Resource Exhaustion and DoS
      • Cloud Malware Injection Attacks
      • Side-Channel Attacks
    • Maintaining Persistence
      • Reverse and Bind Shells
      • Command and Control (C2) Utilities
      • Scheduled Jobs, Tasks and Custom Daemons
    • 💻Network-Based Vulnerabilities
      • Windows Name Resolution and SMB
      • DNS Cache Poisoning
      • SNMP
      • SMTP
      • FTP
      • Pass-the-Hash
      • Kerberos and LDAP-Based Attacks
      • On-Path
      • Route Manipulation
      • DoS and DDoS
      • NAC Bypass
      • VLAN Hopping
      • DHCP Starvation/Rogue DHCP Server
    • Pivoting
      • Post-Exploitation Scanning
      • Legitimate Utilities and LotL
      • Privilege Escalation
    • Specialised System Vulnerabilities
      • Mobile Devices
      • Internet of Things Devices
      • Virtual Machines
      • Containerised Workloads
    • ⚒️Tools
      • Burp Suite
        • Repeater
        • Intruder
        • Other Modules
      • GoPhish
      • Hydra
      • John the Ripper
      • Metasploit
        • Exploitation
        • Meterpreter
      • NMAP
      • Wireshark
    • 🖥️TryHackMe
      • Complete Beginner
        • 1. Complete Beginner Intro
        • 2. Linux Fundamentals
        • 3. Introductory Networking
        • 3.1 Network Exploitation Basics
        • 4. OWASP Top 10 Exploits
        • 5. Upload Vulnerabilities
        • 5.1 An Example Methodology
        • 6. Cryptography - Hashing
        • 7. Cryptography - Encryption
        • 8. Active Directory Basics
        • 9. What the Shell?
        • 10. Linux Privesc
        • 11. More Linux Privesc
      • Jr Penetration Tester
        • Walking an Application
        • Content Discovery
        • Subdomain Enumeration
        • Authentication Bypass
        • IDOR
        • File Inclusion
        • SSRF
        • XSS (Cross-site Scripting)
        • Command Injection
        • SQL Injection
        • Passive Reconnaissance
        • Active Reconnaissance
        • Protocols and Servers
        • Protocol and Server Attacks
        • Vulnerabilities
        • Exploiting Vulnerabilities
        • Linux Privilege Escalation
        • Windows Privilege Escalation
      • CompTIA Pentest+
        • Planning and Scoping
          • Pentesting Fundamentals
          • Red Team Engagements
          • Governance and Regulation
        • Tools and Code Analysis
          • Metasploit: Introduction
          • Wireshark: The Basics
          • Burp Suite: The Basics
          • Hydra
          • Python Basics
        • Attacks and Exploits
          • Phishing
          • Windows Local Persistence
          • Breaching Active Directory
          • Lateral Movement & Pivoting
    • Web Application Vulnerabilities
      • The HTTP Protocol
      • Business Logic Flaws
      • Injection-Based Vulnerabilities
      • Authentication-Based Vulnerabilities
      • Authorisation-Based Vulnerabilities
      • Cross-Site Scripting (XSS)
      • Cross-Site Request Forgery (CSRF/XSRF) and Server-Side Request Forgery (SSRF)
      • Clickjacking
      • Security Misconfigurations
      • File Inclusion Vulnerabilities
      • Insecure Coding Practices
    • Wireless Vulnerabilities
      • Rogue Access Point/Evil Twin
      • Disassociation/Deauthentication
      • Preferred Network List Attack
      • Wireless Signal Jamming
      • War Driving
      • Initialization Vector (IV) and Insecure Wireless Protocol
      • KARMA
      • Fragmentation Attacks
      • Credential Harvesting
      • Bluejacking and Bluesnarfing
      • RFID Attacks
Powered by GitBook
On this page
  • Isolation and Segmentation
  • Internet Communications
  • Communicate Between Azure Resources
  • Communicate with On-Prem Resources
  • Route Network Traffic
  • Filter Network Traffic
  • Connect VMs
  1. Systems Administration
  2. Microsoft
  3. AZ-900
  4. 2. Architecture
  5. 2.2 Compute and Networking

2.2.8 Describe Azure Virtual Networking

Description of Azure VNets.

Azure virtual networks provide:

  • Isolation and segmentation

  • Internet communications

  • Communicate between Azure resources

  • Communicate with on-prem resources

  • Route network traffic

  • Filter network traffic

  • Connect virtual networks

Azure virtual networking supports public and private endpoints to enable communication between external or internal resources with other internal resources.

  • Public endpoints have a public IP address and can be accessed from anywhere in the world

  • Private endpoints exist within a virtual network and have a private IP address from within the address space of that virtual network

Isolation and Segmentation

When a virtual network is setup, a private IP address space is defined using public or private IP address ranges. The IP range only exists within the virtual network and isn't internet routable. That can be divided into subnets and part of the defined address space can be allocated to each named subnet. Azure has built-in name resolution, or an internal/external DNS server can be used.

Internet Communications

A public IP address can be assigned to an Azure resource, or the resource can be put behind a public load balancer.

Communicate Between Azure Resources

  • Virtual networks can connect VMs or other Azure resources, like the App Service Environment for Power Apps, Azure Kubernetes Service, and Azure VM scale sets.

  • Service endpoints can connect to other Azure resource types like Azure SQL databases and storage accounts.

Communicate with On-Prem Resources

A network can be created spanning local and cloud environments. This can be achieved three ways:

  • Point-to-Site VPN: connections are made from a PC outside your network back into your network. The client uses an encrypted VPN connection to the Azure virtual network.

  • Site-to-Site VPN: private networks linking your on-prem device to the Azure VPN gateway in a virtual network. The devices in Azure appear as being on the local network and the connection is encrypted.

  • Azure ExpressRoute: dedicated private connectivity to Azure without travelling over the internet. Useful for environments with greater bandwidth and higher levels of security.

Route Network Traffic

  • Route tables allow you to define rules about traffic direction, custom route tables can be created to control how packets travel between subnets.

  • Border Gateway Protocol (BGP) works with Azure VPN gateways, Azure Route Server, or Azure ExpressRoute to propagate on-prem BGP routes to Azure virtual networks.

Filter Network Traffic

  • Network security groups contain multiple inbound/outbound security rules. These can be defined to allow or block traffic based on source/destination IP, port and protocol.

  • Network virtual appliances are specialized VMs which can be compared to a hardened network appliance. A network virtual appliance carries out a particular function, like running a firewall or performing WAN optimization.

Connect VMs

VMs can be linked together with virtual network peering. Network traffic between peered networks is private and never enters the public internet. Peering enables resources in each network to communicate. The virtual networks can be in separate regions, allowing you to create a global interconnected network. UDR (User-Defined Routes) allow you to control routing tables between subnets within or between virtual networks.

💻